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Aiming at the low speed of traditional scale-invariant feature transform (SIFT) matching algorithm, an improved 

matching algorithm is proposed in this paper. Firstly, feature points are detected and the speed of feature points 

matching is improved by adding epipolar constraint; then according to the matching feature points, the homography 

matrix is obtained by the least square method; finally, according to the homography matrix, the points in the left image 

can be mapped into the right image, and if the distance between the mapping point and the matching point in the right 

image is smaller than the threshold value, the pair of matching points is retained, otherwise discarded. Experimental 

results show that with the improved matching algorithm, the matching time is reduced by 73.3% and the matching 

points are entirely correct. In addition, the improved method is robust to rotation and translation. 
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Binocular stereo vision is an important branch of com-

puter vision[1-3]. Stereo matching has always been a focus 

in the field of stereo vision research[4,5]. The stereo 

matching algorithms can be categorized into three types: 

area-based matching algorithm[6,7], phase-based matching 

algorithm[8,9] and feature-based matching algorithm[10-13]. 

The algorithm of area matching has the following draw-

backs: it is sensitive to the affine distortion and radiation 

distortion; it is lack of robustness against the impact of 

image noise and gray value differences or contrast dif-

ferences; it is difficult to choose the size of matching 

window. The phase-based matching algorithm has good 

inhibition on high-frequency noise images. However, 

when the assumption is not held in the two matching 

images, the phase-based matching algorithm will lose its 

efficiency due to low magnitude of bandpass output sig-

nal. That is the problem of phase singularity. Fea-

ture-based matching algorithm forms sparse disparity 

map. Feature matching algorithm lays more emphasis on 

the space scene structure information to solve the 

matching ambiguity problem. Feature matching has 

strong robustness in many aspects when dealing with 

stereo vision problems.  

On the basis of the former research of our labora-

tory[14,15], an improved stereo matching algorithm based 

on scale-invariant feature transform (SIFT) feature 

matching algorithm and homography matrix is proposed 

in this paper. The algorithm can improve the speed of 

SIFT feature matching and is robust to rotation and 

translation. The SIFT feature is rich in information and 

suitable for fast and accurately matching the feature in 

massive feature databases. Even though there are few 

objects in the scene, a large number of SIFT feature vec-

tors can also be produced, which can easily be combined 

with other forms of feature vectors. The optimized SIFT 

matching algorithm can even meet the real-time re-

quirement.  

SIFT feature matching algorithm mainly includes the 

following steps: firstly, scale space is generated and fea-

ture points in the scale space are detected and extracted, 

and then feature points are accurately located, and direc-

tion parameters are specified for each key point; finally, 

the descriptor of key points is generated in order to com-

plete feature matching between two images. 

The purpose of scale space theory is to simulate 

multi-scale characteristics of image data. Gaussian con-

volution kernel is the only linear nucleus to realize the 

scale change. The space scale of a 2D image is defined as: 
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( , , ) ( , , )* ( , )L x y G x y I x yσ σ= ,                (1) 

where 

( , , )G x y σ  is a scale-variable Gaussian function 

expressed as 
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where (x,y) is space coordinate, and σ is scale coordinate. 
The value of σ determines the smoothness of the image. 

The large scale is corresponding to the general features 

of image, while the small scale is corresponding to the 

detail features of the image. Here, feature points are de-

tected in difference of Gaussian scale-space. The differ-

ence of Gaussian scale space can be constructed as: 

( , , ) [ ( , , ) ( , , )]* ( , )D x y G x y k G x y I x yσ σ σ= − =  

( , , ) ( , , )L x y k L x yσ σ− .                      (3) 

SIFT feature point is the extreme value point of 

scale-space. In order to find extreme value point of scale 

space, each sample point should be compared with 26 

sample points in the adjacent scales and the adjacent po-

sition in the same scale to get the candidate feature 

points. 

 

 

Fig.1 The detection of feature points in difference of 

Gaussian scale space 

 

The candidate feature points have been already identi-

fied in above section. In order to improve noise immu-

nity and enhance the stability of the matching, the key 

points of low-contrast and unstable edge response points 

should be removed. 

Taylor expansion of the difference of Gaussian scale 

space function can be expressed by the following for-

mula: 
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By the above formula, the precise position x̂  of can-

didate points can be obtained: 
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Take Eq.(5) into Eq.(4) to obtain ˆ( )D x , 
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In order to remove feature points with low contrast, 

0.03 is selected as threshold value. If ˆ| ( ) | 0.03D x ≥ , the 

feature point is retained, otherwise discarded. Therefore, 

the position and scale of feature point can be expressed 

as: 

Tˆ ( , , )X x y σ=  .                            (7) 

At the same time, the points of unstable edge response 

can be eliminated by analyzing the property of Hessian 

matrix of extreme point, thus the stable feature points are 

selected.  

In order to make the descriptor rotation-invariant, the 

gradient direction distribution characteristics of 

neighboring pixels at feature point are used to specify 

direction parameters for each feature point. 

( , )m x y =  

2 2

[ ( 1, ) ( 1, )] [ ( , 1) ( , 1)]L x y L x y L x y L x y+ − − + + − − , 

        (8) 

( , ) arctan[ ( , 1) ( , 1)] /x y L x y L x yθ = + − −  

[ ( 1, ) ( 1, )]L x y L x y+ − − .                     (9) 

( , )m x y  and ( , )x yθ  are modulus value and direc-

tion of the gradient at point ( , )x y , respectively. L is the 

value of the point on the scale of the feature point. A 

neighborhood window is created using key point as the 

center, and the gradient direction of neighborhood pixels 

in the neighborhood window is added up using histogram. 

Histogram peak represents the main direction of gradient 

of feature point neighborhood, and it is used as the direc-

tion parameter θ of feature point.  
So far, detecting SIFT feature points has been com-

pleted. There are three pieces of information for each 

feature point: position ( , )x y , scale σ and direction θ. 

Firstly, the axis is rotated to the direction of the feature 

point to ensure its rotation-invariant property, as shown 

in Fig.2.  

 

 

Fig.2 Rotating the axis to the direction of the feature 

point  

 

Then a 16×16 sample window is created using feature 

point as the center, and the sample window is divided 

into 4×4 sub-blocks. And the relative Gaussian-weighted 
directions of sampling points and feature points are clas-

sified into eight-direction direction histogram. Finally the 

128-dimensional feature descriptor is obtained (Fig.3). 
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Fig.3 Obtaining the feature descriptor 

 

C1 and C2 in Fig.4 are the optical centers of left cam-

era and right camera, and P1 and P2 are projections of the 

point P in 3D space on imaging planes of left camera and 

right camera, respectively. P, C1 and C2 constitute a 

plane S in 3D space, and the intersecting line L1 of left 

camera imaging plane and plane S goes through the point 

P1. The intersecting line L1 is called as the corresponding 

epipolar line of point P2. Similarly, the intersecting line 

L2 of right camera imaging plane and plane S is called as 

the corresponding epipolar line of point P1.     

 

 

Fig.4 The schematic diagram of epipolar constraint 

 

The fundamental matrix F and one pair of projection 

points of any space point on left camera and right camera 

imaging planes follow the constraint of: 

'

0⋅ ⋅ =m F m ,                            (10) 

where m and m′ are projection points on left camera and 

right camera imaging planes, respectively, and F can be 

obtained from internal and external camera parameters. 

Therefore, when the fundamental matrix and one projec-

tion point are known, the epipolar constraint equation of 

the corresponding projection point on the other camera 

imaging plane can be obtained.  

Due to the measurement error and uncertainty of the 

camera position and orientation, the corresponding point 

may not accurately appear in the corresponding epipolar 

line. Therefore, the corresponding feature point should 

be searched within a small neighborhood of epipolar line. 

 

 

Fig.5 The schematic diagram of search scope 

If the certain interval of the distance between the ob-

ject and the camera is known, the search scope can be 

limited to a small interval of the epipolar line, as shown 

in Fig.6. Therefore, the epipolar constraint can greatly 

reduce the search space of finding the corresponding 

points. With epipolar constraint, the speed of matching 

can be improved and the number of false match points 

can be reduced. 

 

 

Fig.6 The schematic diagram of search scope limited 

to a small interval of the epipolar line 

 

Homography H represents a mapping relationship. 

After giving one point of an image, the only correspond-

ing point can be found in the other image. Assuming c is 

a point in the left image, and d is the corresponding point 

in the right image, the following relationship exists be-

tween them: 

=c Hd ,                                 (11) 

where H is a 3×3 matrix. If four pairs of corresponding 

points are known, H can be obtained. The pairs of corre-

sponding points obtained from the previous step are gen-

erally more than 4. Therefore, the least square method is 

used to obtain H.     

Suppose the obtained pair of points according to the 

epipolar constraint is (a, a′), where a is the point on the 
left image, and a′ is the point on the right image. Ac-

cording to H, a can be mapped into a′′ on the right image 

by Ha. If the distance between a′ and a′′ is smaller than 

the threshold value T (T is 3 pixels), (a, a′) is retained, 
otherwise discarded. The homography constraint is 

shown in Fig.7.  

 

 

Fig.7 The schematic diagram of homography con-

straint 

 

In order to verify the effect of our proposed method, 

the program is implemented in the environment of MAT-
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LAB2014. In experiment, the resolution of left camera 

and right camera is 1 280×1 024. Fig.8 shows the origi-
nal images captured by the cameras.  
 

 

(a)                         (b) 

Fig.8 The original images captured by cameras: (a) 

Left image; (b) Right image 
 
In order to better realize SIFT feature extraction, the 

histogram equalization is used for original images to 

enhance the edge information and detail information be-

fore extracting SIFT features. Fig.9 shows left and right 

histogram-equalized images. 
 

 

(a)                         (b) 

Fig.9 (a) Left and (b) right histogram-equalized images 
 
Then the SIFT feature extraction is done for treated im-

age, and the threshold value of matching of the feature de-

scriptors is 0.6. Fig.10 is the characteristic direction image 

of SIFT features. There are 263 SIFT features extracted in 

the left image and 635 SIFT features extracted in the right 

image. Fig.11 is the matching image of SIFT matching 

method. 34 pairs of SIFT feature points are matched in total. 

From Fig.11, we can see that there exist false match points. 
 

 

(a)                         (b) 

Fig.10 Characteristic direction images: (a) Left image; 

(b) Right image 
 

 

Fig.11 The matching image with SIFT matching method 

 

The homography H obtained by the least square method is: 
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Fig.12 is the SIFT feature matching image with epipolar 

constraint and homography constraint. 28 pairs of SIFT fea-

ture points are matched in total. Despite the reduction of the 

number of matches in SIFT feature points, we can see that 

there is no error in the matching points from the image. 
 

 

Fig.12 The matching image with our improved method 
 
The matching time of the improved matching method and 

the SIFT matching method is 4 s and 15 s, respectively. 

Since our improved method is based on SIFT feature 

matching, the improved method is robust to rotation and 

translation. The comparison experiment of rotation and 

translation between the improved method and the af-

fine-invariant method is done. The right image is rotated 

at different angles and translated for different distances, 

then the left image and the processed right image are 

matched. The results are shown in Fig.13 and Fig.14. 
 

 

Fig.13 The relationship between error rate and rotation 

 

Fig.14 The relationship between error rate and posi-

tion shift 
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An improved stereo matching algorithm with SIFT 

feature and homograph is proposed. Experimental results 

show that with the improved matching algorithm, the 

matching time is reduced by 73.3% while the matching 

points are entirely correct. In addition, the improved 

method is robust to rotation and translation. 
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